top of page
server-parts.eu

server-parts.eu Blog

The 25 Best HPC GPUs with Teraflop and Memory Information

High-Performance Computing (HPC) GPUs are specialized processors designed to tackle large-scale computations in fields like AI, scientific research, and data analysis.


I Which GPU fits your needs the most?


Teraflops measure how fast a GPU can perform trillions of calculations per second, while memory (VRAM) determines how much data the GPU can handle at once, crucial for tasks like simulations and 3D rendering.

 
 
GPU Model
FP64 Teraflops
FP16 Teraflops
Memory (VRAM)

NVIDIA H200

34.00

1,979

141 GB HBM3e

NVIDIA H100

34.00

1,979

80 GB HBM3

AMD Instinct MI300X

88.00

1,000+

192 GB HBM3

AMD Instinct MI250X

47.90

383

128 GB HBM2e

NVIDIA A100

9.70

312

40/80 GB HBM2e

AMD Instinct MI100

11.50

184.6

32 GB HBM2

NVIDIA V100

7.80

125

16/32 GB HBM2

NVIDIA A40

0.19

37.4

48 GB GDDR6

NVIDIA A30

5.20

165

24 GB HBM2

NVIDIA T4

0.26

65

16 GB GDDR6

NVIDIA RTX A6000

0.19

38

48 GB GDDR6

NVIDIA RTX 6000 Ada

0.19

38

48 GB GDDR6

NVIDIA A16

0.65 per GPU

10.4 per GPU

64 GB GDDR6 (16 GB per GPU)

NVIDIA A10

0.19

31.2

24 GB GDDR6

NVIDIA Quadro GV100

7.40

118.5

32 GB HBM2

NVIDIA Jetson AGX Orin

0.21

32.5

32 GB LPDDR5

AMD Radeon Pro VII

6.50

13

16 GB HBM2

NVIDIA RTX 3090

0.64

71

24 GB GDDR6X

NVIDIA RTX 3080

0.58

59

10/12 GB GDDR6X

NVIDIA Tesla P100

4.70

21.20

16 GB HBM2

NVIDIA Tesla K80

2.91

8.73

24 GB GDDR5

NVIDIA Tesla M40

0.19

7

24 GB GDDR5

AMD Radeon Instinct MI50

6.60

53

32 GB HBM2

NVIDIA Tesla P40

0.19

47

24 GB GDDR5

NVIDIA Jetson Xavier NX

0.21

21

8/16 GB LPDDR4

Top-25-HPC-GPUs-Performance-NVIDIA-A100-H100-AMD-Instinct-MI250X-Teraflops-Memory-Server-parts.eu-Refurbished_data center
 
 

This list highlights the 25 most popular HPC GPUs, covering teraflop performance (FP64 for precision tasks, FP16 for AI) and memory (VRAM). These GPUs are built for heavy computational tasks in AI, data analysis, and scientific simulations.


Single-GPU Cards:

Single-GPU cards like the NVIDIA A100 and AMD Instinct MI100 report total performance since they have one processing unit. These are ideal for AI training, deep learning, and scientific tasks that require powerful, high-precision computing.


Multi-GPU Cards:

Multi-GPU cards, such as the NVIDIA A16, feature multiple GPUs on a single card, suited for parallel processing. Here, performance is shown per GPU for handling multiple tasks simultaneously, common in virtualization and cloud workloads.


Memory (VRAM):

Memory capacity dictates how much data the GPU can handle. Cards with higher VRAM, such as 80GB HBM3 in the NVIDIA H100, can manage large datasets and complex AI models. HBM2e and HBM3 memory types, found in top GPUs, ensure fast data access, crucial for high-end HPC and AI applications.


This list provides key insights to help choose the right GPU based on performance and memory needs, ensuring optimal use for tasks like AI, scientific research, or parallel computing.

 
 

Comments


bottom of page